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INTRODUCTION

The admittance characteristics of three types of slotted-cylinder
antennas are considered, namely, the long axial slot, the finite axlal slot,
and the gap antenna backed by a short-circuited radial cavity.

Most of the present effort is confined to a study of the long slot on
the cylinder. This was done because the computational requirements are not
too severe, yet the results should be indicative of the trends experienced
by finite apertures in a reentry enviromment. Systematic computations of
the admittance per unit length are made for various coating conditions.

First, the case of no coating is considered, and results are compared
with those for identical slots on flat ground planes. Second, the special
case of the plasma resonant w = Wp, V= O coating is analyzed to deter-
mine whether or not a measurement of the input admittance at resonance will
yield diagnostic information. Finally, the case of a general coating is

treated to ascertain the effects of losses and plasma inhomogeneities on

the admittance.
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The exterior portion of finite apertures on coated cylinders are not
-

too difficult to analyze but can lead to computational difficulties, even
in the far fleld where asymptotic expansions may be mede to simplify the
field expressions. In the near field, no such expansions are allowed;
therefore, the computational requirements of the externsl admittance are
more severe. Furthermore, the size of the cylinder chosen for the present
analysis (based on adaptability to feed with the slotted line) was so large
that addi{tional difficulties were introduced into the computations due to
the large arguments of the Bessel and Hankel functions involved.

The work on the large cylinder includes specific computations of the
conductance for the uncoated cylinder, and experimental results for both
coated and uncoated cylinders. Admittance expressions for the coated
cylinder are given and preliminary calculations of the conductance are
discussed. Experimental and theoretical results for radiation patterms
are also discussed.

Finally, the gap antenna, backed by a short circuited radial cavity
and fed by a current element at the periphery is briefly discussed. Spe-
cefic computations of the impedance for the case of no coating are made,
and expressions with coating are given.

THE INFINITE SLOT ON A COATED CYLINDER

The geometry of the structure considered is shown in figure 1. A long
slot 1s cut into an infinite conducting cylinder, and is excited by an
electric field which is uniform along the axis, and across the slot, and
which varies in time as etJot, The structure is coated with a dielectric,

whose complex index of refraction, N may vary in the radial direction.
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The tangential fields, H, and E¢, at any point exterior to the

cylinder are described by a Fourier series in azimuth, i.e.,

B,(p8) = Y Tuale)e I (10)
Bg(e,8) = > Epglo)e™™ (1)

Note that equations (1) are independent of the axial coordinate, and
that the modal coefficients Hpy,(p) and Em¢(p) depend only on the
radial coordinate. These coefficlents are determined by a straightforward
application of the boundary conditions (eppendix II).

The complex power per unit length radiated from the aperture 1s found
by integrating the radial component of the Poynting vector across the slot,

i.e.,

¢o/2

8,/2 .
p- [ s 0B / o ¥ IO (2)

The substitution of equations (1) into equation (2) gives

35 S Bug(@)Em(e) j REICE T

m'=—0 M=-x

P

xa Z Z Em¢ (a)Emz(a)am = na Z E,¢ (a)Emz(a) (3)

Voo M=~=00 T=-~0

vhich is nothing more than Parseval's theorem in cylindrical coordinates.l



The extermnal or radiation admittance is defined by2

2 Eg*(a)Emg(a)
w5 2

Y
Vol Vo M=% Vol 2

cl <

(k)

where V, 1s the applied potential across the slot. Suppose, now that the
slot is fed by & parallel-plate waveguide excited in the TEM mode. It is
assumed that all higher modes are negligible so that Eﬂ is the only com-

ponent of tangential electric field across the aperture, and is of the form

\'
E, = -2 (5)

n

If the slot 1s sufficiently thin, then Eﬂ ® E¢ and dy ¥ a dp. There-

fore the following transform pair exists:

- I/
E,]_E¢-—59-

_ YV, sin nf,/2

6b
2na  m o 2 ( )

Having specified the electric field at the aperture, the external admit-
tance may be computed.
NO COATING

If the antenna radiates into free space, the normaslized external

admittance per unit length as derived in appendix II is

JleyiN 2§ e E(2(O0) 1
MYevi Y, " L (l N aom) Hm<2)'(C) T

Equation (7) was programed on an electronic computer and results were
obtained for two cylinders having different gaps whose circumference-to-

wavelength ratio ranged from 8.4 to 45.4. The results are given in
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figure 2. For reference, the admittance of a slot of the same width on a
flat ground plane as given by Ha.rr:Lngt:on3 is also plotted in figure 2.
To the accuracy with which one could read Harrington's graph, the ‘admit-
tance of the slot on the cylinder throughout the whole range of C was
very close to that of a slot on a flat ground plane.
RESONANT COATING

It has been shown (ref. 4) that only the m = O mode is supported at
the plasma resonant condition, N = O, (i.e., v=0, wp= w) 3 therefore,
the radiation patterns of an infinitely long slot (or the equatorial pat-
terns of a finite slot) are circular, regardless of the size of the cylin-
der and thickness of the sheath as long as each are finite. 8Since the
sudden deformation of the radiation pattern into a circle suggests a
method of diagnosing a reentry plasma, the admittance was also investigated
to determine its behavior at plasms resonsnce for possible means of diag-
nostics. At the resonant condition, this admittance per unit length

(appendix IT) is:

Imh 1
- S — - (8)
yﬁ;:i Yool 5,3 (C) of 1
_(_2)_+5< W
Hy'“’(c)

The results of equation (8) are plotted in figure 3 as a function of C
and W. Again two cylinders were chosen with C ranging between 8.4 and
ll-s.h. Note that for W =1.00 + €, which corresponds to a vanishing
plasma thickness, the conductance decreases from the free-space value by
an order of magnitude. Also, the susceptance can change from a large

capacitative to a small inductive value or zero when the structure is
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coated with this resonasnt plasma. As the plasma becomes thicker, the
admittance per unit length approaches zero. This tendency for the admit=
tance to drop at resonance suggests that a measurement of admittance could
also be used for diagnostics.

The admittance of the slot has not yet been computed as the index of
refraction increases from zero to some small finite value. However, based
upon calculated changes in the radiation patterns due to a small departure
from ressona.nce‘,)+ one concludes that additional azimuthal modes (m =1, 2, 3,
etc.) are rapidly introduced into the field dependence, at least for C
ranging between 22.7 and 45.4. As such, one can expect that these modes
will alter, perhaps significantly, the input admittance from what it is at
resonance; the extent of the alteration increasing with increasing C.
However, for small C, this alteration may still be sufficiently small to
cause a measurement of the input admittance near and at plasma resonance
to be a useful plasma diagnostic tool. This remains to be investigated.
GENERAL COATING

The method described by SwiftD was used to analyze the slotted cyl-
inder coated with a dielectric having a complex index of refraction. In
this spproach, the wave equation is numerically integrated through the
plasma, thereby avoiding the computational problem of evaluating Bessel and
Hankel functions of complex arguments, which describe the functional
behavior of the fields within the coating. Furthermore, if this method is
used, the case of a coating whose dielectric properties vary radially may

also be treated.
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Using Swift's notation, the normalized admittance for either homo-

geneous or inhomogeneous coatings (see appendix II for an outline) is:

YN _ L 2€ = ty(a) + Jup(a)
Ye1 = ch -3 £ Jeﬁlm;am =1 (a) + Jug'(a) (9)

where the prime indicates differentiation with respect to the radial
parameter.
Computations of equation (9) are plotted in figures 5 and 6 as a

function of complex index of refraction for coating thickness corresponding

to 2%(b - a
M

cylinders of size C = 4, 8, and 12. It is important to note that the

= 0.25 and a slot width corresponding to %!'- = 0.25 for
v

admittance is relatively insensitive to variations in C. One is therefore
tempted to conclude that the admittance of identiecsl slots on cylinders
and flat ground planes are, for all practical purposes, the same® 1f C 24
and if the loss angle & of the coating is between 90° and 180°, and if
the magnitude of N 2 1.

Flow field analysis shows that the electron density and collision
frequency msy vary considerably within the plasma sheath. A typical example
of the distribution along a normal to the vehicle is shown in figure 7, and
was chosen as a coating for a cylinder of physical radius 4.152 cm and an
aperture width of 1.016 cm!. The admittance was computed as a function of

the exciting frequency, and the results are given in figure 8.

*A more general conjecture of this type was suggested during conversa-
tions with one of the writers (CMK) by W. Rotman of AFCRL prior to the time
these extenslve computations were performed.

TThis width corresponds to the width of a standard X-band waveguilde.
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Nineteen admittance points were computed in the frequency interval of
10.0 to 11.8 kmc, yet this number was insufficient to establish a smooth '
curve because of small-scale fluctuations. Nonetheless, some interesting
features are revealed. The most striking effect occurs in the region of
peek plasma frequency (10.76 kmc), where the conductance decreases sharply
and susceptance begins to decrease monotonically.

This seems to be consistent with the results of the resonant plasma
coating. At frequencies above resonance, the conductance rises rapidly,
but the susceptance remains relatively constant. As the fregquency
increases, the admittance should approach the no coating values. Below
resonance, the curves are fluctuating too much to suggest any general
conclusions.

For the types of distributions shown in figure T, the peak plasms
frequency seems to be a sharp dividing point for the admittance properties
of slots on cylinders. Whether this is true in general remains to be seen.

THE AXTAT. SLOT ON A COATED CYLINDER

The geometry is shown in figure 9. A waveguide, excited in the TEgjy
mode opens onto a cylindrical ground plane, with the long dimension of the
waveguide parallel to the axis of the cylinder. Higher-order modes are
neglected in the waveguide, and the slot 1s assumed to be thin enough so
‘that over the slot E; = E§ and a dp = dn.

Since the aperture is finite, and since the tangentisl fields vary
with 2z, the fields are described by continuous modes in axis and discrete

modes in azimuth, i.e.,
]

H,(p,8,2) = Z f‘” Emz(p)e-‘jhze-dmgsdh (10a)

mM=2==00 -00
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Eg(p,s$,2) = i fm Em¢(p)e-1hze-dm¢dh (10b)

And the complex power radiated by the aperture is

Zo/2 /2
P-1 f ° f ° B0, (s, )0 0 2 (11)

zo/2

Using Parseval's theorem, equation (11) can be rewritten in the following

form

P = 12-(2::)2 f Em¢ *(a)Ey,(a)dh (12)

M=-=00

And, the external admittance is:

- SR A ? Eg*(a)Ena(a) (13)
'Vol m=-oo 00 |V0|2

If the tangential field is ETl = E¢ the following transform palr exists:

E¢(a,¢,z) cos(%?) (1ka)

cos(l)  sin(ug,[2)
Em¢(a) = 52 m¢og (1)
l( 12> Fol?)

The external admittance cen now be computed using equations (13) and (1Lb)
in connection with the solution of the boundary-value problem, which gives
=
Hpz(a).
NO COATING

For this case of no coating, the normalized external conductance and

susceptance are



1 = 8n
8oy = = ) (158,

B
bey Yco = '2—13-:;3 s rom (Ilm - Izm) (15p)
where
1 2(nky)dy
Tng = f 5T, 2 (16a)
° () [ i)

Iy, = f‘” \]y2 -1 cos2(=rky)1<m|:2npkdy2 - 1ldy (160)
N o Ll Es S

Ipy = fl Jl - y2 cos(nky) {Jm(x)Jm' (x) + Ymp(x)Yp' (x)} dy (16¢)
S R
b2

Equation (15a) was computed over the X-band range of 6.56 to 13.12 kmc
corresponding to a range of slot lengths of 1/2 to 1 wavelength for the
TEpy mode, and the results are shown in figure 10. For this range of fre-
quencies and the 13-inch-diameter cylinder used (2a = 13 in.) the parameter
C 1increases from 22.7 at k = 0.5 to 45.4 at k = 1.0.

As a partial check of the computations, the width of the slot at
k = 0.5 was allowed to approach zero in order to compare the results with
those of Wait (ref. 5) for the thin resonant slot. The computations per-

formed here give g., = 0.383 compared to Wait's = 0.384. This

v |yait
partial check served as a go-shead for proceeding with the other cases.
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' EXPERTMENTAL RESULTS - NO COATING

) The particular size of aperture and range of cylinder size C consid-
ered in most of the computations were chosen with X-band experiments ir
mind. The cylinder shown in figure 11 is 13 inches in diameter and
24 inches long, and is just large enough to contain a Hewlett-Packard
slotted line. The aperture size is O.4 inch X 0.9 inch, which corresponds
to the lnner dimensions of a standard RG-52U waveguide. The short circuit
was realized by placing a small brass plate curved to fit the cylinder sur-~
face and held in place by a strap. Photographs of the end view showing the
feed arrangement and the measurement setup is shown in figures 11 and 12.

The experimental and theoretical results are shown in figure 13. The
measured and calculated values of the input conductance differ by, at most,
5 percent. The agreement is sufficiently close to conclude that the effect
of higher-order modes and/or computational errors are negligible for the
large-sized uncoated cylinder used here. Agreement between first-order
theory and experiment can also be expected to be good for smaller cylinders
with correspondingly thinner slots.
EXPERIMENTAL RESULTS - POLYETHYLENE COATING

The cylinder used above for the noncoated condition was coated with a
polyethylene coating (representing, electrically, an ablative coating) of a
quarter-inch thickness, i.e., T =b - a = 0.25 inch, and measurements of
input waveguide admittance were made. The dielectric constant of this
coating material was first measured over the X-band frequency range to
ascertain the correctness of the published value of €, = 2.25. Four
samples were cut out of the polyethylene stock sheet and their dielectric

constant was measured by both the Von-Hippel method and by directly
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measuring the guide wavelength in a slotted line completely filled with
the sampie material. Both methods of measurement gave an €y Wwhich was
within approximately %1 percent of the published value of 2.25. Tnis is
within the accuracy of the measurements; thus, one can justifiably take
the dielectric constant as 2.25 within this accuracy.

The polyethylene sleeve was "heat fitted" on the cylinder so as to
make a snug fit, and it is estimated that the accuracy of concentricity
of the outer surface and inner surface of the dielectric costing was within
10.010 inch. The slip fitting of the dielectric sleeve on the metal cylin-
der is depicted in the photograph of figure 1k.

The measurements of admittance were made in the conventional manner as
with the condition of no coating. To realize the short circuit condition
and to avold the necessity of removing the dielectric sleeve and then
replacing it at each frequency used, the short was first placed on the non-~
coated cylinder at each of the frequencies to be used and the frequency
setting was accurately determined by means of a frequency meter accurate to
within tE%-mc (Hewlett-Packard Model X532B). These exact frequencies were
then reused with the short removed and the dielectric sleeve in position.

Plots of gy, and by, are shown in figures 15 and 16, respectively.

Measurements were then repeated for four different circumferential
positions of the dielectric sleeve at each of several frequencies, as shown
in table I and figures 15 and 16. The dielectric positions were separated
by increments of 90° and designated by positions A, B, C, and D as defined
in table I. It is seen from figures 15 and 16 that the resultant admit-
tance differs for each position of the dielectric even though the frequency

was held constant. This can be attributed to one or both of the following
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reasons: for each position the "effective dielectric constant" of the

- coating differs due to the approximately *1 percent deviation in the cir-

cumferential variation of dielectric constant which exlists; for each posi-
tion the effective thickness of the dielectric coating differs due to the

inner and outer radial variation of approximately *0.010 inch. In either

case, such changes influence the mean electrical circumferential length of

the coating, C, here defined by:

5:%5:9@«”)1? (17)
v 2

vhere & is the mean radius ('5.' = L‘éi) and N 1is the mean refractive
index. It is seen that the change in C due to changes in & (i.e., W)

and/or N 1is

AE=%(W+1)AIT+N_AW (18)

which since W~ 1 and AW = AT/a 1is

F=CoaAvs NA
KL =L2mM+Ne (19)

It is recognized that the first term contributing to XL is the
change in circumferential electrical length due to the change in the
refractive index of the coating whereas the second is due to the change in
thickness of the coating. Now, here upper limits of AN and AT/a are’
spproximately ANp,, = #0.02 and AT/a = }0.004 so that AC ~C (0.02k4),
DCmpy =~ 0.024Cpay. For the cylinder used at X-band, Cpay =~ 45, therefore,
the maximum change in C can be Nlpgy =~ 1.0; i.e., the mean circumferen-
tial electrical length of the coating can approach the order of a wave-

length in the coating material. Intuitively, one would expect that such a

-13 -



change could very well ldad to a large change in input admittance. It is
seen that the major contribution to AC is from AN. Thus, for large ‘
cylinders (1arge C's) small changes in the refractive index may be
expected to account for the observed changes in admittance.

To make meaningful measurements of the input admittance and to com-
pare them with computed results, it follows that stricter tolerances on the
refractive index and coating thickness will be necessary if one uses elec-
trically large cylinders. These tolerances will be correspondingly
reduced (as seen from eq. (19)) for smaller cylinders. It would seem
then that for an initial test of theory it may be more appropriate to use
smaller cylinders.

The radiation patterns also seemed to be sensitive to smsll changes
in the electrical parameters. The measured equatorial plane patterns are
shown in figures 17(a) to 17(f) along with the corresponding computed
patterns (using expression 335 of Waite). It is seen that the agreement
between theory and experiment in the forward direction is quite satis-
factory; however, at the higher frequencies (k = 0.80, 0.85, and 0.90) the
radiation level measured in the rear was considerably higher than that pre-
dicted, although for the lower frequencies (k = 0.65, 0.70, and 0.75)
agreement at the rear is still satisfactory. The poor agreement in the
rear direction may also be attributed to the critical dependence on the
parameters of N and W.

ATMITTANCE OF A COATED AXTAL SLOT

From the work of Wait2 the pertinent fields established in region 1

(a Sp $D) and region 2 (b £ p S w) of figure II-1 are given by (336),

(337), (339), (340), and (342), (343), (345), (346) of Wait, respectively.
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For the sake of brevity, these expressions will not be rewritten here, but

* it is noted that the following difference in notation is used:

Wait's notation lgg‘igt;zgo gﬁ
H Hy
Ug Uy
ko By

Furthermore, it is noted here that in table I of Wait?e (p. 128) that the

coefficient by should be multiplied by u, and the coefficient ap5 is

lacking a minus sign.

Here again the tangential electric fields on the cylindrical surface

p = a are assumed to be

0 off slot

1]

(20a)

E¢(ai¢)z)

Eo cos(%%) on slot

Ez(a:¢:z)

]
o

(20Db)

From equation (20s) it follows that the transform of By 1is

w - cos(ht
f¢m(h,a) _ f:t f E¢(a,¢,z)edhzejm¢dz a {BEVO o (h2) (21)
-1 -0

(en)2 2x(2)(6222 - =2)

and from (339) of Wait the transform of H, is

H,,(h,a) = u2E)mHm(2)(ua) + Bme(ua.)] (22)
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From Parseval's theorem the external (radiation) admittance is

op m=teo © - '
' Y. = T\;--I‘E-é: %(2n)2 ;2;; u/:” E¢m(h,a)HZm(h,a)dh (23)
° =

Using the six tangential boundary conditions (continuity of E¢, E,,
Hj, B, at p =D, and continuity of Ef end B, at p = a) and determi-
nants gives expressions for By, bm, and Dy, respectively, where Dy 1is
the determinant formed by the coefficients ayp, etc., in table I, p. 128,
of Wait.

Explicitly solving for Bp, by, and D, and substituting the expres-

sions into equation (23) then gives

= /mucu%M)&few[%w%%@kww-uu%”’@w]ﬁﬁwﬁﬂ@w)-mua“>@w] (B 2 - 2 2 [ml wﬁ}}m
_—(—)me-m (w212 - x2)? {;3‘,2 0202 [WPu, 0 (2 () - (D) (0,0 [ivTga() (uyd) - ugn(®) ()] - (n%l) (2 - w?) V[ () (w0 }
(2k)

where:
Un = Jp(ua)By(®) " (wp) - Iy (ub)Ey(2) (ua) (258)
Vp = Jm(ua)Hm(2)(ub) - Jm(ub)Hm(Q)(ua) (25b)
Ly = Jp(ub)Ex(2) " (ua) - 3" (ua)Ey(2) (ub) (25¢)
T = I’ (0)Bp(2) " (ua) - 3" (ua)B,(2) " (up) (254)

As & partial check on equation (24), consideration of the special case

of no coating (b = &) or an air coating (N = 1) each cause equation (24) to

reduce to equation (15a) and (15b) as should be
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Rationalization and normalization of equation (24) then glves

(2 - 9z - yz)cose(%,){(ne - ) (a - )02l Tam® 0
e s fl R AN ]2 + (my)?(2 - 1)27m2|3m(2)(x)|"} a
B¢ T ———— ettt

- R R e T TR

(sz)‘*(%-)gﬁ 50 (1 + 8.1)
- W52 Vmﬁm(e)'(m] [\Il - 32 T (2)(x)
- PR ()] - w2(e - l)szI;E!m‘z)(x)]Er

(26)
where X = CW{l1 - y2, N
i-'m = Em(x)ym'(%) - Jm'(%)Ym(Xﬂ
T, = Em' (x)Ym'(%) - Jm'(%)ym' (xﬂ
T, = Em(§)Ym'(x) - Jm'(X)Ym(%)]
Vm = Pm L Yn(X) - m(X)Ym K]
E B -2 @ g (27)
Im = -JIn
Ty = ~JTp
Uy = 'Jt—lm
Vm = ‘jvm

/

It is important to note that the above expression was also derived inde-
pendently by integrating the Poynting vector over a spherical surface of

radius r in the far field. As a partial check on equations (27) the case
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of no coating (b = a, i.e., W =1) or an air coating (W = 1) both reduc;a
equations {27) to equation (15a) as should be.

It is noted that the above reduction of y. shows that only the inte-
gration from O £y S 1 contributes to the conductance (which may be antic-
ipated if one considers that the conductance can glso be obtained using
Poynting's vector and the radiation fields).

However, the expression for b, will be of the form

bclNﬁ=»/;l+LN+Aw (28)

for the general case of an arbitrary homogeneous coating. As yet the
explicit form for the integrands of equation (28) has not been obtained.
For the special case of a plasma coating at plasma resonance (one for
which o = ®p and v = 0) the refractive index is identically zero, i.e.,
N = 0. For this condition, it has been shown that the equatorial plane
radiation field is independent of ¢ and that, therefore, the only term
contributing to the fields in the summation over m is the m = O term.
This must also hold for the near fields and the fields over the plasma
cylinder else no omnidirectionality would be possible. Thus for N = O,
only the m = O mode of equation (25) need be retained (this can also be
shown rigorously). In this case, only the zero order and first order
Bessel, Hankel, and modified Bessel functions are involved. As such, the

programing of the expression for Yo should present no special problem.

N=0
An sttempt was made to program a modified form of equation (27) in
order to compute the conductance of the axial slot on the 13-inch-diameter

coated cylinder. However, the results seemed to be in error by at least
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6 iercent. Possible errors in this computation are still being investi-
‘gated by examining a plot of the integrand of equations (27).
THE CYLINDRICAL GAP ANTENNA

The antenna under discussion, shown in figures 18, 19, and 20, is
essentially a cylindrical geometry version of a spherical slot antenna
described by Musiake and Webster(. Such an antenna has interesting fea-
tures that mske it extremely useful as a dlagnostic tool for reentry plasma
sheaths. To name a few:

1. Tts cylindrical structure with no protruding part allows it to be
an integral part of the reentry vehicle.

2. The feed system consisting of the inmer conductor of a coaxial
cable across a gap much smaller than a wavelength supports a uniform cur-
rent; as a result, solutions are possible without assuming an aperture
field distribution.

3. In spite of such a narrow gap, the antenna is an excellent radiator
when its circumference is approximately equal to 2 wavelengths. At VHF fre-
quencies, the physical size of the antemna is compatible with the size of
many smgll reentry vehicles.

4, An additional feature of the narrow gap is to rule out the existence
of axial magnetic fields at the asperture and inside the gap. Consequently,
only azimuthal E,; modes are excited and this field distribution is main-
tained even in the presence of radially nonhomogeneous plasmas.

5. The antenna is a resonant structure whose radiation and impedance
properties are determined only by one significant azimuthal mode. TFrom the
number of lobes in the radiation pattern, it is possible to determine the

significant modal impedance.
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6. Finally, this is an antenna which is amensble to simple mathe- ~
matical analysis, permitting accurate prediction of both far and near field
performance.

In this paper the antenna input impedance both with and without plasma
coating 1s discussed. Experimental checks are only given for no coating,
and are correlsted to the radiation patterns.

INPUT IMPEDANCE WITH NO PLASMA COATING

Consider the cylindrical gap antenna depicted in figure 18. The gap
width 4 1is narrow compared to the free-space wavelength KoQi << Ko) and
is formed by a radial waveguide short-circuilted at its center by a spacer
of radius p = p,. The gap is fed by a coaxial line located at the rim of
the guide at p = a. The coax center conductor makes electrical contact
with the guide top plate and its outer conductor is shorted out against the
bottom plate. Because the gap width is small, with respect to the wave-
length, the current along the coax inner conductor across the gap can be
teken to be constant and equal to I. If the voltage in the coax is V.,

the antenna input lmpedance presented by the gap to the coax is

Zin = -Yf- (29)

This is not merely a definition but also a measurable quantity related to
the reflection coefficient T in the coax via its characteristic imped-

ance Z,,

Zin = Ze %‘:—11: (30)

In order to calculate Z;,, refer to figure 21 which shows the feed region
grossly enlarged. The voltages V. and Vg in the cosx and in the aper-
ture, respectively, are related by Maxwell's equations to the magnetic flux
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enclosed by the line integral of the electric field yielding these voltages,

that is,

va-vc=-%ﬂ§-£ (1)

for a perfectly conducting wire. The integration is over the surface
defined by the loop boundary just described. The right-hand side of equa-
tion (32) is the inductive reactance of the loop, im»oLZ times the total
current I flowing in the wires and spreading through the radial guide

plates. Equation (29) can thus be rewritten after dividing by I

-YIS- = _v? + 1w 1y (32)

-V
—TQ is immediately recognized as the input impedance Z;, being sought.

The ratio :¥§ has the dimensions of an impedance and is defined as the
antenna aperture impedance. It will be shown that the aperture impedance
is not in general directly measurable, but in some cases it can be calcu-
lated from a knowledge of the fields in the aperture. The quantity imoly
can be considered to be solely due to the reactance of the loop.

Equation (32) may now be expressed as follows*

Zin = (Za + Zar) + (Zga + Z¢) (33)

where the first term in parenthesis is equal to :TQ and the second to

iwgly .  Each parenthesis consists of two parts, the self-impedances Zg,
Zp, and the mutual Z.p = Zp,. (The f and a subscript denote, respec-

tively, feed and aperture impedances.) The two impedances, aperture and

*Dr. George I. Cohn made the analysis described by equations (33)

to (38).
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feed, can sometimes be calculated and/or measured independently of each
other if the interaction caused by the mutural impedances is negligible. ‘
This is the case i1f the fields can be divided on a spatial basis into sub-
volumes such that the fields in any one subvolume can be attributed only to

sources not producing fields in any other subvolume. Thus, if
|Zag] << |Zg (%ha)
or

lzafl << |zf| (34p)

then 2, = :¥Q is directly calculable from the fields in the gap which are
obtained by solving the electromagnetic boundary value problem. Z¢ 1is the
wire inductive reactance in the absence of the gap.

The flux common to two subvolumes is always less than the self-linking

flux; therefore,

(35a)

~
L
I
=
L.

or

N
V)
el
1}
N
o

One way to insure separability of impedances as given by equation (33) is

to demand

|Za | << |2g| (36a)
or

|22 | << |2 (36b)
that is, either the wire inductive reactance is much smaller than the aper-
ture impedance or vice versa. It will be shown that the feed wire induc-
tive reactance can be made to fulfill the inequality equation (36b) for the

gap antenna In question and vanishes as the gap goes to zero. The feed
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impedance Zp and the aperture impedance Z,; (in the absence of coupling
‘between them) will now be calculated, keeping in mind that as long as equa-
tion (3b) is satisfied, the antenna input impedance Zyp 1is the sum of
these two contributions.

An upper bound on the feed wire inductive reactance is established by
calculating the Inductance of a coaxial line of length d with inner and
outer radii ry; and ro. Using the geometrical approximation, it is

easily shown that

= 37d 1n 220 (37)
7 N T
r & ~L1 ang 22~ 10.
30 an 1
[zg] ~ 300 (38)

Since the antenna is to have an input impedance of 500 resistive in order
to match the coax characteristic impedance, equation (36) is not fulfilled

and the input impedance is not separable into feed and aperture. Changing

the outer to inmer coax radii ratio in equation (37) is not as effective as
reducing the gap width since the logarithm varies slowly with the ratio in

question. However, if the gap width 1is reduced by 1/2 or 1/3 corresponding
to d/A, of the order of 1/60 to 1/100, equation (36) is fulfilled and the
impedance is separable.

The solution of the electromagnetic fields subject to the boundary

conditions yields the aperture admittance, Y, =-{§— for each peripheral

-Vm
mode m, where Vy = E,; d, is the voltage across the gap for the mth mode
as shown in figure 22. The total aperture impedance is in turn related to

Y, by
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(39

S PN

1
m ‘m ‘@ Gp+ i(Bm; + Bm?)

where Byl 1s the susceptance presented at the feed by the interior
region, and Gy and By® 1s the admittance contributed by the exterior
region. For a narrow gap, with uniform feed current, the resultant modal
admittance Y, normalized with respect to the wave impedance in the
exterior space Y, ((1209)‘1 for free space) has been found to be

Vm = g + 1(0" * bu')

1 sin c@ o L sin c? o
4 2 m\2 - 2
)y "{f" e F & g <1’5x2>2®}

Be® = 1280 {fol Jm(no JE - xz)Jm'<ﬂ-o 1 - x ) + Y %Jl - XQ)Ym' (ao\Jl ﬁ) ot o xy,  ax ) L“ KK:' (aoJxe - l) tn o2 x_gg _xg:_l

ERICE FEE ) o
- ot J’“(E"ql - x2)Jml (a°dl o x )* Ym(% 1- xz)ym‘ (“om) xdy 2 - Km(ao\]xT-—l) xd, 2
(%) [\fo Hm(zl'(ao o )‘2 sin c2 _f (l B ::)3/2 h L Km'(ao\/,?__';'.) sin ¢2 __29- (_;_QL:SIlL)?,E
Byl = 1280 Jn'(80) In(ro) - Imlro)¥n'(8g stn o Xo _ sin("d
do [Jm(ao)‘lm(ro) - Jm(ro)Ym(ao)J 2 (,%)

(40)
X, ags dg; Ty being respectively normalized: wave number k/ko,
cylinder radius koa, gap width k,d, spacer radius kgpy.e Y, Wwas
derived by calculating the fields in both regions, matching them at the
boundaries between antenna and exterior region taking into account the
discontinuity in current.

For each mode m, there exists a current sheath J,, around the gap
periphery which is independent of =z (fig. 22). The electric field
across the gap resulting from this current density is also independent of
z at the interface. It follows that the locally induced magnetic field

at the interface does not vary along the gap width. Pursuing this reasoning
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reasoning further, only a z-dependent H¢ could produce an Ep component
and this one in turn would produce an H,. One therefore concludes that,
in the absence of z-dependent field components, no H, component is gener-
ated at the gap interface.
EVALUATION OF APERTURE IMPEDANCE Zg

Equation (40) for gy, bp®, and byl was used to calculate the
various modal impedances for a frequency scaled up model of the cylindrical
gap antenna under study. The model shown in figures 19 and 20 was designed

to operate around 1090 mc with the following parameters:

Gap width, d = -'3% inch, d, = 0.156
Spacer radius, pg, = 1 inch
Gap radius, a = 3 inches, ag = 2.13

Operating wavelength, A, = 8.81 inches

Graphs showing pertinent calculations of g, boe, and bim are shown in
figures 23, 24, and 25. The calculated normalized conductance and suscep-
tance for the above parameters as well as the unnormalized corresponding
impedances are shown in table II for mode numBérs ranging from m = 0 +to
m = 9. The important feature of these results is the fact that for an
antenna circumference approximately two wavelengths, the first order mode
(m

(m = 0) have a reactance that tends to cancel the reactance of the modes

1) contributes most significantly to the impedance. The modes below

above it (m 2 2). In essence, for each value of a, the antema 1is a
resonant structure, with one contributing mode. (For ag ~ 1 it can be
shown that Z, is the resonant impedance.) The resonant mode determines

both the impedance as well as the radiation characteristics. TFor the
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specific choice of parameters above a. = 2.13, the measured radiation '

o}
pattern shown in figure 26 exhibits the two lobes that one would expect
from the m = 1 cosinusoidal aperture distribution of figure 22. There~
fore, the size of the antenna establishes only one specific mode as the
contributing one and this mode in turn determines uniquely both the

input impedance and the radiation fields.

APERTURE IMPEDANCE IN THE PRESENCE OF A NONHOMOGENEOUS PLASMA

The plasma model under consideration is represented by a radially
varying dlelectric uniform, in the ¢- and z-direction.

The approach followed is the one developed by C. T. Swift8. The
plasma is subdivided in n-concentric cylindrical sheaths. Each sheath is
taken to have a uniform plasma and collision frequency equal to its aver-
age through the sheath.

The fields in the radial waveguide are matched at the interface to
those 1n the first sheath. The field transforms in each sheath are no
longer forward traveling waves expressed in terms of Hankel functions.
They are standing waves consisting of the linear superposition of Hankel
and Bessel functions. The fields in Region I and the first sheath of

Region II are

Region I
v
EzmI = ?% w
Vy Fr (k
H¢mI - 1Y, & ml( 09)5 (k1)
d Fm(kop)
I. gy 2 'm
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Region II (1lst layer)

\
— I1 1
Eom = ulg_
= 1 _ =1' xmTl
H¢m = ~1Y 1 ko1 W m "jyjﬁn > (42)
g O1_ mi; 1l 1
Bom = Yo1¥o1 pém + ikuy § -
v,
<

ﬁimgl = uli?ﬁ}

= Tl 71, . - 1'$

gy = ~Bfn + iZo1ko1udy (43)
= I1_. =1 1

Em =~ = ikufy + Zo1ko) %Usﬁ

S

The foregoing expressions for Region I were obtained after making the
substitution
2 -
Up™ = ko2

uo2anoFo(vop ) = B

In Region II, forward traveling waves are replaced by the standing

waves, i.e.,

X
en )01 T ) - 0] + 09 )
> (L4h)
()82 (up) = By (k70) = 051903 (w0 + BpH ()8, () (wy )

/

ij' and_jﬂgl are derivatives with respect to the argument (ulp).

- 27 -



The modal aperture admittance Yy is now expressed in terms of these

unknown coefficients by demanding that

H¢mH1_H¢mI=.2_}rg 05z%a (45)

Using the expressions (U41) and (42), it follows that

+ Byt (2) (w2 )e™ Pk ax + 1Y, P (ko) %E - 0Sz<a  (4)

In order to eliminate the dependence on z, both sides of equation (46) are

integrated from O +to d. And, use of the relation

a
%fo e 2ax = ¢y (k)

results in

-1Y kg1 f ]:amlJml(ula) + Amle(Q) ' (ula):] u1Co(k)ak - % f _ EamlJm(ula)
+ Bmle(2)(ula)] KCo(k)dk + 1Y, %&{%’;ﬁ \% = = (57)

In order to find Y the four coefficients aml, Am;, bm;, and Bm}

must be expressed in terms of Vp. This is done as follows.
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‘ - As shown by Swift* a Transfer Function can be developed which relates
‘via & 4 X 4 matrix the unknown coefficients, agyl, AL, byl, and B '

in the first sheath to the free-space coefficients cp,d; beyond the last
sheath. The transfer function depends only on the values of Jm(uipi) and

\
’ Hm(uipi) at each sheath and the corresponding plasma parsmeters. The
matrix coefficients are labeled C ke Their values are given in the cited

reference. The following relation holds among these coefficients

— -— p— e —

By Cin C12 Ci3 Cuwufj O

1
Ay Co1 Cop Coz Copflem

(48)

By | |41 Ch2 Oys Cuyl|dm

— - —

The preceding equations reduce the number of unknowns from 4 to 2. Appli-

cation of the two tangential boundary conditions at the antenna surface,

i.e.,
= A
Em = ‘% Co*(k)
(49)
f¢m =0

*The rield expressions are different from Swift because the factor
1 .
Thioe is absorbed in the coefficients apl(k), Apl(k), byl(k), and
Bml(k)- Furthermore, the fields are constructed from eimfeikz  unite
Swift uses negative exponents. The above expressions can be converted to

Swift's by dividing all field transforms by u,€; and changing m and

k into -m and -k.
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allows the unknown coefficient ¢, and 4, and, consequently, a,ml, Aml‘,
bml, and Bml to be expressed in terms of V,. The derivation now
follows.

Equation (48) can be written as

ag = Cipcpy + Clhdmw
1 =c¢ +C
20Cm oldy
B (50)
bl = Capcy + Cahdpy
1 _
Bp = CupCy + Cyidy )

Therefore, from equations (47), (49), and (43), after using equation (50),
it follows that

¥,
_._‘LZ. co™ (%)

%me + Ce:eﬁm(g)} g + {Clqu + Czuﬁm@? dy = =

{Casz' + 0y (?) 4 1oy B oom + 022Hm(2):]}°m + {Jyﬂm' + Oty v vy B s (Caia + thHm(2ﬂ} Oy = 0

(51)

. 1 1 1

Solving for cp and 4, in terms of Vp and expressing e, Ap, by,
and Bml in terms of V, via equation (49) and substituting into equa-
tion (41) results in the following expression for the modal antenna aper-

ture admittance covered with plasma.

Y,

® ’ o
ﬁ = ko18 f_m (‘flg%u - Clucjp)(-’m')“) + (ng“‘m; - Cgucu2)<ﬁm(2)'>2 + (Clzcuu - CyuCup + Cplay - CE),C52)Jm'}1,n(2) L—"ASE %

e

ko8

f {crzea - cucsp) (Jm)2 + (ot - CoCyp) (Km(e))g + (C1o0m, - CluChp + CosCay - cgucy)Jng{m(?) C—°;—C—°- :“7 ‘jk——l— -2mom
- 1




where A the determinant of the 4 X 4 matrix in equation (51) is given by:
A = (C1L - C14C50) Ty’ + (1ot - C14Cup ), (2)

It is understood that the arguments of the cylindrical functions are

uja = J(kol2 - k2)a. The quantity kg 1is the wave number in the first
plasma sheath adjacent to the antenna.
As a partial check on the validity of expression (52), the plasma is

removed, in which case

C12 = Cyy = Cpy = Czp = Cs) = Cyp = 0

w
[o]
'—l
1}
W
O

The admittance now reduces to

where Cg*Cy = sin c2 %%.

Equation (54) is equivalent to equation (40) prior to bresking it into

real and imaginary parts.
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CONCLUDING REMARKS

This investigation of slotted cylinders has led to the following con-
clusions:

(1) For the case of resonant coating QD =wp, V= O), the admittance
approaches zero as the thickness of the coating increases. At intermediate
thicknesses, the susceptance can change from a large capacitative to a
small inductive value or to zero.

(2) For all practical purposes, the admittance of identical slots on
cylinders and ground planes is eguivalent if the circumference-to-
wavelength ratio of the cylinder is greater than four and if the loss angle
of the plasma lies between 90° and 180°, and the magnitude of N 2 1.

(3) For the reentry plasma distribution shown in figure 7, the admlit-
tance undergoes pronounced changes when the propagating frequency
approaches the peak plasma frequency.

(4) The admittance of apertures on large coated cylinders (C Z 20)
seems to be sensitive to slight changes in the electrical and mechanical
tolerances of the coating. As such, one is led to conclude that theoreti-
cal results will be difficult to realize experimentally unless electrically
small cylinders are used (C < 10).

(5) The resonant properties of the cylindrical gap antenna indicate
that it may be useful for plasma diagnostics. The presence of plasma or
any change of antenna parameters brings one azimuthal mode into prominence
which determines both the shape of the radiation pattern and the value of
the antenna input impedance. As the plasma varies in density, it would be
expected that various modes would be successively exclited; therefore, one

could expect the pattern and the input impedance to change accordingly.
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APPENDIX T

LIST OF SYMBOLS USED IN THE ANALYSIS OF THE AXTAL SLOT

radius of conducting cylinder

mf,

sin —2—-

mao
2
susceptance

radial distance to sir-plasma interface

circumference of cylinder in wavelengths = %ﬁ%

electric field

Fourier transforms of electric field
amplitude of electric field at aperture
amplitude of incident TE,; wave
conductance

magnetic field

Fourier transforms of the magnetic field
axial mode number

length of slot in wavelengths = 7./7\v
length of slot

azimithal mode number

index of refraction

power

a/l

Poynting vector

radial mode number

applied potential on slot
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I
o2
S~
9]

w width of slot
Y admittance
Ys admittance of free space
Yo1 waveguide admittance of TE,; mode
B wave number
Bol wave number for the TE,; waveguide mode
T reflection coefficient
0 m#£n
5" Kronecker delta =
1 m=n
€ dielectric constant
€5 permittivity of free space
€y real part of the dielectric constant
n,8 transverse components within a rectangular waveguide
A wavelength
Aol guide wavelength
Ho permeability of free space
v electron collision frequency
p,¢,z cylindrical coordinates
¢o angular width of slot
w exciting frequency
wp plasma frequency
Subscripts:
c external
in input
1 per unit length




plasma resonant

vacuum

vector component along narrow dimension of waveguide
vector components along the three principal directioms in

cylindrical coordinates
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APPENDIX 11
ADMITTANCE EXPRESSIONS FOR LONG SLOTS ON CYLINDERS

The pertinent fields in regions I and II of the structure shown in

figure 1 are:
5, (0,8) = i AmETm(ap) + BmHm(e)(sp)] o~JoP (1I-1)
B,50,8) - > caip® (be)e™ ™ (11-2)

E¢I(p:¢) = ?J; J'Eez m;i_w AmEIm' (Bo) + BmHm(2) '(Bp):l o~ Jup (11-3)

Egp,8) = i"L i le?fm(g)'(va)e’jmgzs (11-4)

o}

where the prime denotes differentiation of the Bessel and Hankel functions
with respect to the argument.

If it 1s assumed that the aperture field is of the form:

2 _ . ®_ sin o — 3mi
E4(a,p) = %—’ = m;o Em¢(a)e"3m¢ = 211?5 ;L:, (2—03 eI (11.5)
5

then the boundary conditions at p =a and p = b give the following

algebraic relationships

Vo sm(%) a1 (o) + (2)‘(1\10):' (1I-6)
N AR o[’ () + 2o,




P (80) + B, (2)" 10| = ()" (o) (11-7)

=2y~

Aszm(NCW) + Bmﬂm(a)(NCWﬂ = gl (2) (cw) (11-8)

Solving the above equations for Ay and B, gives:

Ap = 'Jﬁm¢NYo

where

Therefore:

where

NHm(2) (NCW)Hm(z) ' (cw) - Hm(2) (CW)Hm(Q) ' (NCW)

: (11-9)
Hn(2) (OW) Ty - NEy(2) ' (CW)Ly
(2) : (2)"
_ — B 7/ (CW)Jy (NCW) - NIm(NCW)Ep'=’ (CW) I1-10)
P NHm(e)(NCW)Hm(z)‘(CW) -Hm(a)(CW)Hm(e)'(NCW) (
Ty = Jg' (NOW) B, (2) ' (ve) - 77 () m,(2) " (wew)
(II-11)

Ly = Jg(New)E,(2) " (ne) - 3" (we)m (2) (new)

H, = Amlj_rm(nc) + BmHm(e)(NCEl

_ vy, {2 vy - By () (cnyuy (11-
= -] o ' 1I-12)
Em¢NY {Hm(z) (Cw)Tm - NHm(z) (CW)Lm

Up = Jn(ne)E,(3) (vow) - 1" (vow)E, (2) (xc)
(1I1-13)
Vg = ay(ve)E (2) (now) - gy(now)E, (2) (xc)

From Parseval's theorem, the external admittance per unit length is given

by
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op == Eng Hyg
Y., = = IT-1h4) .
°t |Vo|® e m=Z-oo \AG (=)

And the substitution of equations (II-5) and (II-12) into equation (II-14)

results in the following admittance expression

P :
A w S 51n2(959) Ny (2) (oW)Vy - By (2 (oW)uy

Yo1 =-5—

ona  © £, (m¢0)2 Ha(é)(CW)Tm - NHm(z)'(CW)Lm
2

(11-15)

For the case of no coating (w =1 or b = a), equation (II-15)

becomes:

uf
2| o
_ 3% zf sin ( 2 ) Hm(z)(c) (1I-16)
]
2ra == m¢o 2 Hm(z) (C)
2
It has been shown® that at plasma resonance, the fields, hence the
admittance, are indepent of the azimuthal coordinate, ¢. Therefore, only
the m= 0 mode is supported, and equation (II-15) reduces to
¥,

Ter = Zma 28 ©

wE,(2) " (cwyv, - B,(3) (cw)u,
5,2 (oW, - ¥E,(2) (oW,

(11-17)

In order to evaluate the above equation, the following expansions are

necessary:

Jo(x)

ne
}—J
]

X I, (x) = -

N

(11-18)

e

R

Yo(x) = %-log x YO'(X)




to give

W
~dly 1 ~ 2
To=x" - % Yo = -3 mew
> (11-19)
~ Ly 2 ~ .32
Lo:ji(NC Vo=j,t1°gw
J

Therefore, for N =0 and W>1

] -J 3 30(2)(CW)
e [wno(e)'(cm + &M 5, (2) (ow) (v - ilf)]

Yo (11-20)
To analyze the inhomogeneous plasma, a method described by Swirth is

used. Using Swift's notation, the axial magnetic field with the plasma

expressed as follows:

B, (r,0) = i [Gmg]ir)](:me-w (11-21)

m==c0

where the ratio gmc% = tp(r) + JUy(r) is numerically evaluated to give
solutions of t, and u, at the surface of the conducting cylinder,
r = a. The details of the technique are adequately described in the ref-
erence and will not be repeated here.

At r = a the boundary condition at the aperture gives

m¢ 1 . f
sin(-—eﬁ-) =_CmE°m (a) + Jup'(a)] (II-22)

(m¢o) Jwe(a)

Em¢(a'; ¢) = ;?a

2

which allows Cp, hence H,'(a,f) to be computed. Therefore, use of

Parseval's theorem gives the following asdmittance expression
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The prime in the above equation denotes differentiation with respect to r.
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APPENDIX IIT
RELATIONSHIP BETWEEN INTERNAL AND EXTERNAL ATMITTANCE

Computation of the external admittance is only half the story since
the external admittance as such is not a measurable gquantity; when an
experiment is performed, the input admittance is referred through a meas-
urement of the reflection coefficient. This input admittance (or reflec-
tion coefficient) as seen in the feed structure must be related to the
external admittance. To do this, however, flow conservation immediately
inside and outside the slot is used.

The pertinent fields which exist in the waveguide, due to the wave-

gulde opening onto the ground plane, are

Ey = ?oe-'j%lzcos(“z—g)[l + rejzﬁolz] + (h.t.)g (III-1a)

H = _];Zyole"molzcos(%)[l - rejebol"‘] + (h.t.)g  (III-1b)

Assuming that higher-order terms vanish, i.e., (h.t.)E = (h.t.)H = 0 the

complex power flow expressed in terms of the fields inside the slot is

Py = |Eo|Z(1 + T - MY, B (IT1-2)
But,
Vv
=0 _1 -

EZ T W 1l+TD (£11-3)

Therefore,
.22 _1(0+mM@-D)wy _1(1-T\y IIT-4
e |Vo|2 w2 1+ 1|2 2 "ol " v\l + T/t ( )
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But, the input admittance is defined as

H
Yy =-==7% G‘ ) (III-5)
yl

Therefore, the following relationship exists between the external and input

admittance

Yy = 2(‘{-)1{(: (I11-6)

or, in normalized form,

(11I-7)

Yin =
n ol

l—<|’_‘_l-<
[
0
He
=
+
C.
o
He
o
I
no
S~
~ g
Py
z|¢
=
t4
Q
<

Therefore equation III-T relates a calculated normalized external admit-

tance (ycv) to the measurgble normalized input admittance Yin*
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TABLE II.- TABLES OF MODAL IMPEDANCE OF GAP ANTENNA

n 8 b + byl Zp, Ohms

o 8.23 27.1 3.9 - Ji2.7
1 7.06 -.66 55 + J35.1
2 k.02 48.8 6+ J7.7
3 1.11 -107 j3.5
L .19 -168 Ja.5
5 .01l -229 J2.0
6 -292 j1.6
7 ~355 J1.b
8 k20 3.9
9 -486 j.8
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Figure 3.- Admittance at plasma resonance.
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Figure 22.- Gap modal electric field distribution.
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